Lipoproteins and Lipid Transport
![image.png](https://static.wixstatic.com/media/2ac116_1cd7ad5709d046ecb68fcafec5e1b0f8~mv2.png/v1/fill/w_527,h_396,al_c,q_85,enc_avif,quality_auto/2ac116_1cd7ad5709d046ecb68fcafec5e1b0f8~mv2.png)
Cholesterol Synthesis
-
cholesterol only comes from animal products
-
humans can survive on cholesterol-free diet (ex. vegan) because our body can synthesize cholesterol using acetyl-CoA
-
in the cytoplasm and ER of all cells with a nucleus​
-
major tissues/organs: liver, intestine
-
mevalonate and squalene are important intermediates
-
-
LDL receptor mediates cholesterol uptake in cells
CHL Synthesis - Regulation
-
cholesterol biosynthetic pathway (HMG CoA synthase and HMG CoA reductase) is regulated at the transcriptional level (HMG: 3-hydroxy-3-methylglutaryl-coenzyme A)
-
cholesterol is an end product feedback inhibitor (negative feedback) when [CHL] is high​​
-
​​
-
-
​
-
HMG CoA reductase is the primary target
-
statins (ex. lipitor) inhibit (competetive)​
-
CHL --> faster degredation of HMG CoA reductase
-
phosphorylation --> less active enzyme
-
![Screenshot 2023-11-10 at 8.18.13 PM.png](https://static.wixstatic.com/media/2ac116_6f8c025a3f16491bb0f6654049e36db5~mv2.png/v1/fill/w_306,h_48,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_6f8c025a3f16491bb0f6654049e36db5~mv2.png)
-
3 Acetyl CoA --------> HMG CoA --> mevalonate
![image.png](https://static.wixstatic.com/media/2ac116_9ad27313d50e43c78c355bf1f1de68f6~mv2.png/v1/fill/w_422,h_298,al_c,q_85,enc_avif,quality_auto/2ac116_9ad27313d50e43c78c355bf1f1de68f6~mv2.png)
![image.png](https://static.wixstatic.com/media/2ac116_5bf0b55f15d94192849dc1b33d72c0ce~mv2.png/v1/fill/w_270,h_426,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_5bf0b55f15d94192849dc1b33d72c0ce~mv2.png)
![image.png](https://static.wixstatic.com/media/2ac116_3a3ace9f89da49769d36a870cacca949~mv2.png/v1/fill/w_390,h_540,al_c,q_85,enc_avif,quality_auto/2ac116_3a3ace9f89da49769d36a870cacca949~mv2.png)
Apolipoproteins (Apo)
-
protein component of lipoproteins
-
different apolipoproteins give lipoproteins their identity
-
letters A to E used
-
some exceptions ex. ApoB-48​
-
FUNCTIONS
-
stabilize lipoproteins
-
serve as markers to be recognized
-
give lipoproteins their "identity"​
-
-
affect enzyme activity
![image.png](https://static.wixstatic.com/media/2ac116_a271a452fd50466fb959e780c9ac4a75~mv2.png/v1/fill/w_476,h_393,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_a271a452fd50466fb959e780c9ac4a75~mv2.png)
Major Lipases
LIPOPROTEIN LIPASE
-
TAG --> 3 FFA + glycerol
-
works on TAGs from chylomicrons and VLDL (endogenous)
-
in capillary wall near tissue
PANCREATIC LIPASE
-
TAG --> 2 FFA + MAG
-
works on TAGs you just ate
-
pancreas --> lumen of GI
Transport of Lipids
Chylomicrons deliver TAG from GI to adipose and muscle
-
ApoB-48​
-
TAGs don't enter tissues​​​
-
TAGs are hydrolyzed first to glycerol and FFAs by an enzyme called lipoprotein lipase (LPL)
-
LPL is bound to inside of capillary walls​
-
is a glycoprotein
-
gene present in muscle, adipose and heart
-
activated by apoC II
-
LPL in adipose tissue is insulin sensitive
-
![image.png](https://static.wixstatic.com/media/2ac116_413c5fc7b50f4b53ab24375318e55138~mv2.png/v1/fill/w_482,h_268,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_413c5fc7b50f4b53ab24375318e55138~mv2.png)
![image.png](https://static.wixstatic.com/media/2ac116_3528bf31bd784429a2f84a074af3931d~mv2.png/v1/fill/w_528,h_314,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_3528bf31bd784429a2f84a074af3931d~mv2.png)
Chylomicrons deliver TAG from GI to adipose and muscle
-
glycerol stays in the blood
-
FFAs enter cells
-
inside cells they are reincorporated into TAGs
-
they new glycerol for TAG synthesis comes from glucose in the cell​
-
-
in adipose tissue, TAGs can also be made from FFA that the adipose tissues synthesizes
![image.png](https://static.wixstatic.com/media/2ac116_702175d2c1c74143ad10472710a195ab~mv2.png/v1/fill/w_521,h_326,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_702175d2c1c74143ad10472710a195ab~mv2.png)
![image.png](https://static.wixstatic.com/media/2ac116_b934021a52434ec2992c3b3c090ef25c~mv2.png/v1/fill/w_71,h_26,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_b934021a52434ec2992c3b3c090ef25c~mv2.png)
![image.png](https://static.wixstatic.com/media/2ac116_480503f8c17b43dd9c10858118879bfe~mv2.png/v1/fill/w_16,h_40,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_480503f8c17b43dd9c10858118879bfe~mv2.png)
-
Dietary TAGs in chylomicrons are not the only source of TAGs
-
after a meal (high in CHO therefore excess energy) and during all 24 hours of the day, the liver synthesizes FA and forms TAGs from glucose
-
Liver does not store TAG but exports as VLDL
-
released to systemic blood to peripheral tissues​
-
if TAG accumulates in blood, it leads to fatty liver disease
-
therefore, adipose tissue receives TAG from both chylo and VLDL
-
-
after chylomicrons and VLDL deliver TAG to tissues, there are remnants with much lower TAG content
-
chylo remnants go to liver​
-
VLDL remnants are used to make
-
IDL​
-
LDL
-
-
![image.png](https://static.wixstatic.com/media/2ac116_3b4be4a4b64542a9a61070c1973a167f~mv2.png/v1/fill/w_438,h_431,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_3b4be4a4b64542a9a61070c1973a167f~mv2.png)
![image.png](https://static.wixstatic.com/media/2ac116_016f90bada4c4f3799d06920eb8b3ca4~mv2.png/v1/fill/w_720,h_428,al_c,lg_1,q_85,enc_avif,quality_auto/2ac116_016f90bada4c4f3799d06920eb8b3ca4~mv2.png)
![image.png](https://static.wixstatic.com/media/2ac116_f12174d1cc9d4ffebd97e1756e5a2365~mv2.png/v1/fill/w_720,h_480,al_c,lg_1,q_85,enc_avif,quality_auto/2ac116_f12174d1cc9d4ffebd97e1756e5a2365~mv2.png)
Lipoproteins
Chylomicrons​​
-
transports dietary TGs from the GI to the liver, adipose tissue and muscle
-
carries dietary TGs > CE
Chylomicron remnants
-
chylomicrons after most of the TG is removed within the capillary beds of muscle and adipose tissue by the action of LPL
-
carries dietary CHL
![image.png](https://static.wixstatic.com/media/2ac116_27d8ed34bd054280b98832660d90998b~mv2.png/v1/fill/w_600,h_487,al_c,q_85,enc_avif,quality_auto/2ac116_27d8ed34bd054280b98832660d90998b~mv2.png)
VLDL
-
transports mostly TGs, some CHL, from liver to periphery
-
carries endogenous TGs
IDL
-
transient; derived from VLDL in the capillaries of adipose tissue and muscle after the extraction of TGs by LPL in the capillary beds
LDL
-
derived from VLDL
-
carries endogenous CHL
HDL
-
collect free CHL from other lipoproteins and cells and sends it to liver for "reverse transport" of CHL from cells to liver
-
carries CHL
-
net effect: collect CHL from peripheral cells and other lipoproteins and send back to the liver
-
in liver, CHL is used to synthesize bile acids
-
fecal disposal of bile acids is the main route for CHL to leave our bodies
![image.png](https://static.wixstatic.com/media/2ac116_41c2eaf5f3cd4fe794a4fed3faab9d68~mv2.png/v1/fill/w_507,h_600,al_c,lg_1,q_85,enc_avif,quality_auto/2ac116_41c2eaf5f3cd4fe794a4fed3faab9d68~mv2.png)
![image.png](https://static.wixstatic.com/media/2ac116_762d66808f254b7492d4c867f2aeb20a~mv2.png/v1/fill/w_532,h_292,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_762d66808f254b7492d4c867f2aeb20a~mv2.png)
LDL METABOLISM
-
LDL delivers CHL to tissues
-
tissues need LDL receptors to uptake LDL
-
LDL receptors:
-
transmembrane glycoprotein​
-
interacts with apoB-100
-
internalized by endocytosis
-
once inside cell...
-
LDL receptors release LDL and go back to the surface of cell
-
LDL is processed in lysosome
-
AAs
-
FFA
-
free CHL
-
decreases HMG CoA reductase abundance​
-
activates ACAT --> increases CE synthesis
-
decreases LDL receptor --> decreases LDL take in
-
-
LDL + apo(a) = lipoprotein A
-
Apo (a)
-
LDL-apoB-100 linked to apo(a) via disulfide bond​
-
structure homology between apo)a) and plasminogen
-
plasminogen binds to fibrin and dissolves blood clot
-
because apo(a) has similar structure, it competes with plasminogen and competes with fibrinogen
-
risk factor for CVD
-
-
apo(a) is linked to apoB-100 on LDL
-
apo(a) brings CHL to site of injury
-
![image.png](https://static.wixstatic.com/media/2ac116_82024f58837c4212b73ececd3d203fb3~mv2.png/v1/fill/w_534,h_384,al_c,q_85,enc_avif,quality_auto/2ac116_82024f58837c4212b73ececd3d203fb3~mv2.png)
Dietary fat and CVD
positive correlation
-
total fat
-
saturated FAs
-
CHL
-
trans fat
negative correlation
-
MUFA
-
PUFA
​
Stearic acid (18:0)
![image.png](https://static.wixstatic.com/media/2ac116_c6e696fc3b0c4a9e9745354b37760aba~mv2.png/v1/fill/w_504,h_393,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/2ac116_c6e696fc3b0c4a9e9745354b37760aba~mv2.png)