Glycolysis
![maxresdefault.jpg](https://static.wixstatic.com/media/2ac116_6575979514db494c9295436dedaa95d4~mv2.jpg/v1/fill/w_600,h_337,al_c,q_80,enc_avif,quality_auto/maxresdefault.jpg)
Energy Transfer
![image.png](https://static.wixstatic.com/media/2ac116_2a4fd0d15bf24fa08234a9de79556315~mv2.png/v1/fill/w_495,h_430,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Oxidation/Reduction Reactions (REDOX)
-
oxidation - removal of electrons
-
decrease in potential energy​
-
dehydrogenation - removal of H
-
liberated H transferred by coenzymes
-
NAD and FAD​​
-
-
-
reduction - addition of electrons
-
increase in potential energy​
-
Adenosine Triphosphate (ATP)
-
links anabolic and catabolic reactions
![image.png](https://static.wixstatic.com/media/2ac116_5f1a99268fdc4a09b06249fee689186b~mv2.png/v1/fill/w_511,h_342,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_9d0cda21186a4353b6d0cd09304e1a6f~mv2.png/v1/fill/w_454,h_210,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
ATP
-
a nucleotide consisting of the nitrogenous base adenosine, the sugar ribose, and three phosphate groups​
-
the energy from the hydrolysis of ATP is directly coupled to endergonic processes by the transfer of the phosphate group to another molecule
-
the recipient molecule is now phosphorylated​
-
Two Mechanisms of ATP generation
-
substrate level phosphorylation
-
transferring high-energy phosphate group from an intermediate directly to ADP​
-
-
oxidative phosphorylation
-
remove electrons and pass them through electron transport chain to oxygen​
-
-
ATP is continually regenerated by adding a phosphate group to ADP
-
energy support renewal comes from catabolic reactions in the cell​
-
regeneration (endergonic) requires an investment of energy
-
![image.png](https://static.wixstatic.com/media/2ac116_f4621598423d4f32bf275d13f887c173~mv2.png/v1/fill/w_330,h_374,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_4f4b1068fd6d422b872c82d7d68c0037~mv2.png/v1/fill/w_677,h_346,al_c,lg_1,q_85,enc_avif,quality_auto/image.png)
Glucose Catabolism
-
glycolysis (does not require oxygen - anaerobic)
-
​formation of acetyl-CoA
-
krebs cycle
-
electron transport chain (requires oxygen - aerobic)
![image.png](https://static.wixstatic.com/media/2ac116_0e31d89bb7bd4a11827d296f780258d7~mv2.png/v1/fill/w_600,h_258,al_c,q_85,enc_avif,quality_auto/image.png)
Glycolysis
-
first step in making ATP
-
occurs in cytosol
-
splits 6C sugar glucose into 2-3C molecules of pyruvic acid
-
consumes 2 ATP but generates 4
-
10 reactions
-
fate of pyruvic acid depends on O2 availability
-
when O2 absent -> reduced to lactic acid (small ATP production)​
-
when O2 present -> converted to acetyl-CoA and proceeds to TCA cycle (large ATP production)
-
![sketch0215_2.webp](https://static.wixstatic.com/media/2ac116_2ce43e9896a14dc5a317c3df0159f015~mv2.webp/v1/fill/w_240,h_476,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/sketch0215_2.webp)
Energy Investment (step 1-5)
Step 1: Glucose -> G6P
-
energy investment
-
"activation" step​
-
-
G6P is trapped in cell
-
irreversible​
-
-
A phosphate group is added to carbon 6 of glucose
-
first use of ATP​
-
energy from ATP transferred to glucose to make G6P, now trapped in the cell
-
![image.png](https://static.wixstatic.com/media/2ac116_c2b1c2e87c59494abdde833d67ffaab9~mv2.png/v1/fill/w_600,h_397,al_c,q_85,enc_avif,quality_auto/image.png)
Step 2: G6P -> F6P
-
isomerization
-
converts glucose to fructose
-
Aldehyde to ketone​
-
-
necessary for later steps
-
reversible
![image.png](https://static.wixstatic.com/media/2ac116_4b398bbab1a84b5a93c2ca1f73c09eec~mv2.png/v1/fill/w_600,h_324,al_c,q_85,enc_avif,quality_auto/image.png)
Step 3: F6P -> F1,6BP
-
energy investment
-
"activation" step​
-
-
Enzyme - phosphofructokinase (PFK)
-
modulated allosterically; ATP inhibits when energy stores high​
-
adds another P to C1
-
now have P at both ends
-
-
irreversible
![image.png](https://static.wixstatic.com/media/2ac116_05ef59cd6ea04eae839ad740bdc542d6~mv2.png/v1/fill/w_600,h_349,al_c,q_85,enc_avif,quality_auto/image.png)
Step 4: F1,6BP -> G3P + DHAP
-
splitting up
Step 5: DHAP -> G3P (2 G3Ps)
-
isomerization
-
cleavage or split of C6 into two C3
-
both C3 are sugars​
-
the enzyme is adolase
-
C3s are not identical, but are interconvertible via isomerase (step 5)
-
-
SO FAR: used 2 ATP and split C6 into C3
![image.png](https://static.wixstatic.com/media/2ac116_10295b0db8284a9d90d1931d5e4fec01~mv2.png/v1/fill/w_600,h_325,al_c,q_85,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_43fd8014e916482e8c5cffd5a5c25720~mv2.png/v1/fill/w_600,h_430,al_c,q_85,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_42676ccf2a3d4e4baf9ce21b5ea6ee4f~mv2.png/v1/fill/w_342,h_164,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Energy Payoff (step 6-10)
Step 6: G3P -> 1,3BPG
-
VERY IMPORTANT STEP
-
reversible
-
oxidation (dehydrogenation) of G3P
-
REDOX reaction
-
NAD+ is reduced to NADH + H​
-
primary e- and H+ acceptor​
-
-
-
removal of H and 2e- from C1
-
the second H comes from the enzyme
-
insertion of Pi added to the C3 sugar
-
conserves the energy released by the oxidation of G3P
-
transferring H+ and e- is one way we move energy around​
-
energy released when G3P is oxidized
-
-
results
-
1,3 BPG and NADH + H​
-
![image.png](https://static.wixstatic.com/media/2ac116_c580920d6b0b4e01b0343d8f39adb13c~mv2.png/v1/fill/w_552,h_284,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Step 7: 1,3BPG -> 3PG
-
ATP production
-
substrate level phosphorylation
-
Pi from 1,3 BPG + ADP -> ATP​
-
-
reversible
![image.png](https://static.wixstatic.com/media/2ac116_10855f5d181f4af496c0b2cfdcefec2d~mv2.png/v1/fill/w_600,h_349,al_c,q_85,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_c3a951fc2eca45e499947f56ab748c18~mv2.png/v1/fill/w_103,h_38,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Step 8: 3PG -> 2PG
-
rearrange location of P
-
P becomes higher energy P by moving it from carbon 3 to 2​
-
setting up for another substrate-level phosphorylation
-
-
reversible
![image.png](https://static.wixstatic.com/media/2ac116_299f21848bc841c8a707fe4ab8aeb576~mv2.png/v1/fill/w_600,h_317,al_c,q_85,enc_avif,quality_auto/image.png)
Step 9: 2PG -> PEP
-
removal of water
-
rearrangement of atoms makes the P even more high energy
-
PEP has a very high energy bond
-
it can be used to donate P to ADP to make ATP​
-
reversible step
-
![image.png](https://static.wixstatic.com/media/2ac116_bd8cbaa109464e0eb89268ebd535d2d9~mv2.png/v1/fill/w_551,h_291,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Step 10: PEP -> Pyruvate
-
produce pyruvate (pyruvic acid)
-
this is also the second ATP formed
-
via substrate level phosphorylation​
-
-
irreversible step
-
when there is O2, glycolysis stops here
![image.png](https://static.wixstatic.com/media/2ac116_e281a41d32434e7392249d7250a98d96~mv2.png/v1/fill/w_545,h_297,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_4158f009e6874f2fa7ebbd65690aeca3~mv2.png/v1/fill/w_600,h_407,al_c,q_85,enc_avif,quality_auto/image.png)
Energy Yield
Per molecule of glucose (G6)
-
2 substrate level phosphorylation (2 ATP/glucose)
-
step 7 and 10​
-
but these are really C3 molecules x2
-
-
really 4/molecule of glucose, but 2 ATP are used
-
step 1 and 3​
-
-
NET ATP OF 2
![image.png](https://static.wixstatic.com/media/2ac116_a4953fd0fc55438998bced6854991f9a~mv2.png/v1/fill/w_600,h_496,al_c,q_85,enc_avif,quality_auto/image.png)
Glycolysis Step 11: Anaerobic
-
ONLY UNDER ANAEROBIC CONDITIONS
-
pyruvate -> lactate
-
pyruvate is reduced to lactate​
-
NADH + H donates the H+ and e-
-
coenzyme now becomes oxidized (NAD+)
-
this is how we regenerate under anaerobic conditions​
-
![image.png](https://static.wixstatic.com/media/2ac116_863ec543ab584fdb948459dbe3518aef~mv2.png/v1/fill/w_600,h_327,al_c,q_85,enc_avif,quality_auto/image.png)
Fate of Lactic Acid
-
lactate will leave tissue and go into blood
-
ends up in liver
-
liver will convert lactate -> pyruvate
-
liver can use pyruvate in aerobic metabolism
-
this recycling is called the cori cycle
-
pyruvate -> lactate under anaerobic conditions​
-
lactate -> pyruvate in liver
-
will become very important when we challenge metabolism by fasting​
-
-
![image.png](https://static.wixstatic.com/media/2ac116_b6dc7b1381b04be4893254036acdfc36~mv2.png/v1/fill/w_328,h_266,al_c,lg_1,q_85,enc_avif,quality_auto/image.png)