TCA Cycle
Note: Interchangeable with Krebs Cycle
![TCA-Cycle-Meaning-and-Analysis-Method-fig2.jpg](https://static.wixstatic.com/media/2ac116_770f5451ee9b4e4abe3837732e61952c~mv2.jpg/v1/fill/w_600,h_499,al_c,q_80,enc_avif,quality_auto/TCA-Cycle-Meaning-and-Analysis-Method-fig2.jpg)
Pyruvate -> Acetyl CoA
-
Pyruvate dehydrogenase (PDH)
-
links glycolysis with the TCA cycle​
-
involves
-
oxidative decarboxylation - removes CO2​
-
dehydration removes H+ and e- and forms NADH + H
-
Acetyl group attached to coenzyme A to form acetyl coenzyme A (acetyl CoA)
-
-
also uses other coenzymes
-
TPP​
-
α-lipoic acid
-
FADH2
-
-
PDH Complex
![image.png](https://static.wixstatic.com/media/2ac116_9d8a51a460d64c86a2be6333f36bdf42~mv2.png/v1/fill/w_531,h_387,al_c,q_85,enc_avif,quality_auto/image.png)
-
As pyruvate enters the mitochondrion, PDH modifies pyruvate to acetyl CoA which enters the Krebs cycle in the matrix
-
a carboxyl group is removed as CO2​
-
a pair of electrons is transferred from the remaining two-carbon fragment to NAD+ to form NADH
-
the oxidized fragment, acetate, combines with coenzyme A to form acetyl CoA
-
![image.png](https://static.wixstatic.com/media/2ac116_98555a99f79c4b66a0bea2233faca3fb~mv2.png/v1/fill/w_503,h_279,al_c,q_85,enc_avif,quality_auto/image.png)
SIGNIFICANCE
-
first release of CO2
-
make more NADH which goes to ETC for ATP
-
pyruvate has left glycolysis
-
now energy from pyruvate can go into TCA as acetyl-CoA
Aerobic Oxidation of Glucose
-
begins with anaerobic steps of glycolysis in the cytoplasm
-
glucose only partially oxidized in glycolysis
-
C6 -> C3 vs C1 in CO2
-
more energy to release
-
![image.png](https://static.wixstatic.com/media/2ac116_5be3b589c9d4452996f33a3d6aadbba2~mv2.png/v1/fill/w_535,h_292,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Krebs Cycle
-
Takes place in mitochondria ​
-
aerobic, but no O2 directly involved
-
cycle vs linear pathway
-
glucose is linear​
-
glucose -> pyruvate​
-
-
TCA is circular
-
regenerates the starting compound after each turn of the cycle​
-
-
-
TCA = the hub of metabolism
-
meeting place of catabolic processes of CHO, fat and protein metabolism​
-
starting point of many biosynthetic reactions
-
![image.png](https://static.wixstatic.com/media/2ac116_3c09d7eecc21421d89d8a7e26c8dd4b4~mv2.png/v1/fill/w_578,h_404,al_c,q_85,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_461f3d455cb74739acbe3b41fb5d511f~mv2.png/v1/fill/w_415,h_454,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
GOAL​
-
uses up (oxidizes) acetyl CoA from glucose and FAs
-
makes reduced coenzymes for respiratory chain (ETC)
-
makes ATP via substrate level phosphorylation
-
regenerates oxaloacetate (OAA)​
-
releases CO2
-
oxidative decarboxylation ​
-
what we eventually breathe out
-
![image.png](https://static.wixstatic.com/media/2ac116_d89a6a93f9d9419b969100b86202db87~mv2.png/v1/fill/w_336,h_177,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Step 1: OAA + Acetyl CoA -> Citrate
-
OAA is a keto acid with 4 carbons
-
OAA binds with Acetyl-CoA to form citrate
-
citrate has 3 carboxyl groups
![image.png](https://static.wixstatic.com/media/2ac116_65fe1b32cb504c0aa8bbfa07815b9251~mv2.png/v1/fill/w_600,h_271,al_c,q_85,enc_avif,quality_auto/image.png)
Step 2: Citrate -> Isocitrate
-
citrate rearranges to form isocitrate
-
there is an intermediate step during isomerization reaction which forms a compound called cis-sconitate (not shown) before you get isocitrate
![image.png](https://static.wixstatic.com/media/2ac116_e6414a40aeea431c989582a8f0fb6003~mv2.png/v1/fill/w_515,h_302,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_79572a7600864bdd8646d8a4635b5e9b~mv2.png/v1/fill/w_59,h_54,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_79572a7600864bdd8646d8a4635b5e9b~mv2.png/v1/fill/w_59,h_54,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Step 3: Isocitrate -> α-ketoglutarate
-
Complex step - very important
-
dehydrogenation (loss of e- and H+)​
-
NAD -> NADH + H​
-
these carry the H and the e- to the ETC so ATP can be made by oxidative phosphorylation
-
-
decarboxylation (remove CO2)
-
one of the CO2 that OAA contributed, not from acetyl CoA​
-
C6 -> C5
-
-
![image.png](https://static.wixstatic.com/media/2ac116_e936a299d2d24c60988d5adf1ca94001~mv2.png/v1/fill/w_600,h_341,al_c,q_85,enc_avif,quality_auto/image.png)
Step 4: α-ketoglutarate -> Succinyl-CoA
-
Similar to last step but more complex
-
Dehydration​
-
more NAD+ -> NADH + H​
-
-
Decarboxylation
-
lose another CO2​
-
one of the CO2 that OAA contributed, not from acetyl CoA​
-
C5 -> C4
-
-
Add CoASH
-
CoASH puts high energy into the system​
-
this energy will be used to make ATP via substrate level phosphorylation, similar to step 5 of glycolysis
-
-
![image.png](https://static.wixstatic.com/media/2ac116_ef9572ce7c424aedb043cc2df78395b4~mv2.png/v1/fill/w_117,h_105,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
![image.png](https://static.wixstatic.com/media/2ac116_f8045ffe56ca465f81425e5e5aec703f~mv2.png/v1/fill/w_587,h_264,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
CoASH
-
when acetyl CoA is not attached to a acyl group = CoASH
-
-SH can form a thioester linkage
-
acyl-CoA carry high - carry high energy bond in the form of a thioester linkage
-
thioester bond has higher energy (less stable - wants to hydrolyze) and will drive the next reaction forward
Step 5: Succinyl-CoA -> Succinate
-
use the energy from breaking the thioester bond to form GTP from GDP + Pi
-
GTP is similar to ATP, except made with guanine instead of adenine​
-
GTP can easily be converted to ATP so we say that we made ATP in this reaction
-
-
still stay at C4
-
lose the CoASH
-
just used to provide energy for substrate level phosphorylation​
-
![image.png](https://static.wixstatic.com/media/2ac116_706130acf1ad46179df0828b1003dbae~mv2.png/v1/fill/w_522,h_294,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/image.png)
Step 6: Succinate -> Fumarate
-
third dehydrogenation step
-
uses FAD -> FADH2​
-
not removing H from OH, but removing two H to form double bond
-
CH2-CH2 -> CH=CH​
-
-
![image.png](https://static.wixstatic.com/media/2ac116_b2912278fada4f12b18072e091fd46ae~mv2.png/v1/fill/w_600,h_338,al_c,q_85,enc_avif,quality_auto/image.png)
Step 7: Fumarate -> Malate
-
hydration step
-
hydration of the C=C bond
-
setting up for one more dehydration step
-
both compounds still C4
![image.png](https://static.wixstatic.com/media/2ac116_457519e49d864b098344e9fcc301f6e5~mv2.png/v1/fill/w_600,h_332,al_c,q_85,enc_avif,quality_auto/image.png)
Step 8: Malate -> OAA
-
This is the last step
-
the next step would be to start the cycle over again​
-
dehydration step​
-
NAD -> NADH + H (more reducing equivalents to the ETC)
-
![image.png](https://static.wixstatic.com/media/2ac116_e8c0b476a7b94ac1a8133ea226cf1a58~mv2.png/v1/fill/w_600,h_341,al_c,q_85,enc_avif,quality_auto/image.png)
ATP Yield in TCA cycle
-
2X/glucose (1 glucose -> 2 pyruvate)
-
once for each pyruvate​
-
![image.png](https://static.wixstatic.com/media/2ac116_cebaa21852eb4ce496fe6d66b7222516~mv2.png/v1/fill/w_600,h_239,al_c,q_85,enc_avif,quality_auto/image.png)